On the Relative Importance of SO₂ oxidation to High Dust SCR DeNOx units

Morten Thellefsen Nielsen

Haldor Topsøe A/S, Denmark

Allegheny Power

Outline

- Introduction
 - SO₃ formation and related problems
- SO₃ capture by fly ash
 - Prediction of SO₃ concentration at SCR outlet
 - Model description and results
- SO₃ sampling technique
 - A critical review of the Controlled Condensation Method
 - SO₃ capture by fly ash on filter
 - SO₃ collection
 - SO₄2- determination
- Case studies
 - The fate of SO₃ in coal fired power plants
 - Sampling related problems
 - Results from two U.S. coal fired power plants
 - Harrison Power Plant (3 x 640 MW)
 - Pleasants Power Plant (2 x 625 MW)
- Conclusions

SO₃ formation and related problems

SO₃ formation

- Furnace
 - rule of thumb (US-EPA)
- SCR SO₂ oxidation
- Total

0.7 % of SO_2 conc.

0.5-1 % of SO₂ conc.

1.2-1.7 % of SO₂ conc.

SO₃ capture by fly ash

Less SO₂ oxidation in power plant SCR DeNOx compared to dust free laboratory measurements

STATE OF STA

CaO, MgO, Na₂O, K₂O, Fe₂O₃

Prediction advantages:

- More accurate SO₃
 concentrations at the
 SCR outlet
- Air heater optimization
- Effect of fuel switching or SCR retrofitting

SO₃ capture by fly ash - model

The SO₃ removal rate in the flue gas follows a simple reaction mechanism:

$$-\mathbf{r}_{SO_3} = \mathbf{k} \cdot \mathbf{C}_{SO_3} \cdot \mathbf{C}_{CaO}$$

Reaction constant

 \rightarrow temperature

Gaseous SO₃ concentration

Concentration of alkaline sites

- \rightarrow ash composition
- \rightarrow ash concentration
- → particle size distibution

SO₃ capture by fly ash - model

Pilot plant experients

- dust type
- dust loading
- residence time
- temperature
- SO₃ conc.

PRB-ash

- Alkaline
- Fines

SO₃ measurementsControlled Condensation Method- a critical review

SO₃ measurements - collection

SO₃ measurements - ash filtration

Coal fired power plant

- bituminous coal
- outlet of two SCR's
- 750 °F flue gas

Sampling

- in-duct quartz wool plug
- perpendicular sampling
- re-using filter in consecutive measurements

SO₃ measurements - ash filtration

Pilot plant experiments

- bituminous coal ash
- 32 ppm SO₃ inlet
- quartz plane filter
 - filter load 2 grains/ft³

Case studies - the fate of SO₃

Case studies - power plant data

Harrison power station

- 3 x 640 MW
- high sulfur bituminous coal
- SCR deNOx
- rotary air heater
- cold side ESP
- wet SO₂ scrubber
 - sulfite precipitation

Pleasants power station

- 2 x 625 MW
- high sulfur bituminous coal
- SCR deNOx
- rotary air heater
- cold side ESP
- wet SO₂ scrubber
 - forced oxidation

Case stories - results SCR DeNOx

- Double determinations in three sampling ports
- Four SCR units tested on each power plant
- >12 hour stabilization time
- Static mixers upstream sample ports at Harrison

	Harrison	<u>Pleasants</u>
- SO ₂ in	2323 - 2692 ppm	2740 - 3254 ppm
SO ₃ in	26 - 30 ppm	19 - 37 ppm
inlet stratification		
· SO ₂	2.8 - 5.2 %	1.4 - 7.3 %
• SO ₃	7 - 15 %	5 - 42 %
SO ₂ out / SO ₂ in	0.98 - 1.09	0.96 - 1.01
SO₂ oxidation	0.29 - 0.81 %	0.42 - 0.92 %
 Temperature 	630 - 678 °F	658 - 696 °F

Case stories - results ESP and Stack

➤ Significant SO₂/SO₃ stratification at ESP outlet

→ rotary air heater operation

➤ Some SO₃ removal in FGD

SO₃: 17 / 18 ppm SO₂: 2505 / 2407 ppm

SO₃: 7.9 / 8.2 ppm

SO₂: 2176 / 2162 ppm

	Harrison	<u>Pleasants</u>
 SO₂ ESP outlet 	2313 ppm	2370 ppm
 SO₃ ESP outlet 	13 ppm	40 ppm
stratification		
• SO ₂	7.4 %	14 %
• SO ₃	46 %	7.5 %
 SO₃ in stack 	10 ppm	22 ppm

Conclusions

- SO₃ capture by fly ash reduces observed
 SO₂ oxidation across SCR DeNOx
 - Prediction by simple reaction mechanism
- SO₃ sampling is not simple
 - SO₃ capture by fly ash on filter
 - Risk of insufficient SO₃ collection
 - Underestimation of true SO₃ concentration
- SO₃ emissions depends on the overall operation of the power plant
 - furnace, SCR deNOx, rotary airheater, ESP and FGD

